Monday, August 17, 2015

Propositional Calculus Proofs (1)

A proof of a theorem R is a finite sequence of logical formulae P, Q, ... , ∴R, in which each formula is either a substitution in an axiom or in a previously proven formula, or results from the rule MP.

For all logical formulae P, Q,... , R, the notation  R means that there exists a proof of R (in other words R is a theorem),  P  R means that with P added to the axioms there exists a proof of R, and P, Q....  R or P1, P2, P3, P, Q....  R means that with P, Q.... and the axioms, there exists a proof of R. The formula R is then derivable from P, Q,..., iff P, Q.... R.


Derived Rules (ie proof using a hypothesis)
Th1⊢ ( S  T )
1.) ⊢ T                                Hyp
2.)  T ⇒ (S ⇒ T)               Lk1
3.) ⊢ S ⇒ T                       MP 1,2


Th2) [H  (K  L)]  [(H  K)  (H  L)]
1.)   (K  L)                                                              Hyp 
2.)  [H  (K  L)]  [(H K (H ⇒ L)]                  Lk2
3.)  (H  K)  (H  L)                                                 MP 1,2

No comments:

Post a Comment