For all logical formulae P, Q,... , R, the notation ⊢ R means that there exists a proof of R (in other words R is a theorem), P ⊢ R means that with P added to the axioms there exists a proof of R, and P, Q.... ⊢ R or P1, P2, P3, P, Q.... ⊢ R means that with P, Q.... and the axioms, there exists a proof of R. The formula R is then derivable from P, Q,..., iff P, Q.... ⊢R.
Derived Rules (ie proof using a hypothesis)
Th1) T ⊢ ( S ⇒ T )
1.) ⊢ T Hyp
2.) T ⇒ (S ⇒ T) Lk1
3.) ⊢ S ⇒ T MP 1,2
Th2) [H ⇒ (K ⇒ L)] ⊢ [(H ⇒ K) ⇒ (H ⇒ L)]
1.) ⊢ H ⇒ (K ⇒ L) Hyp
2.) [H ⇒ (K ⇒ L)] ⇒ [(H ⇒K) ⇒ (H ⇒ L)] Lk2
3.) ⊢ (H ⇒ K) ⇒ (H ⇒ L) MP 1,2
No comments:
Post a Comment