△u = f(x + △x) - f(x) and △v = g(x + △x) - g(x)
And the value of the product (u + △u)(v + △v) can be interpreted as the area of the largest rectangle above. The change in the rectangle then is
△(uv) = (u + △u)(v + △v) - uv = u△v + v△u + △u△v
Or in other words the sum of the three shaded regions above. Now dividing by △x, yields
△(uv)/△x = u(△v/△x) + v(△u/△x) + △u(△v/△x)
Now take the limit of △(uv)/△x as △x ⟶ 0 and you get the derivative of uv:
d(uv)/dx = u lim△x⟶0(△v/△x) + v lim△x⟶0(△u/△x) + lim△x⟶0(△u) lim△x⟶0(△v/△x)
d(uv)/dx = u(dv/dx) + v (du/dx) + 0 (dv/dx)
d(uv)/dx = u(dv/dx) + v (du/dx)
No comments:
Post a Comment