Both prefix and postfix notation are more efficient than infix
notation because parenthesis need not be used.
Infix To Prefix
∀X{[¬ (P)] ⇒ (X = X)}
¬ ( P )
¬P
X = X
=XX
[¬P]⇒(=XX)
⇒[¬P](=XX)
⇒[¬P](=XX)
⇒¬P=XX
∀X{⇒¬P=XX}
∀X⇒¬P=XX
∀X⇒¬P=XX
Infix
To Postfix
∀X{∀Y[∃X(∀W{(W ∈ Z) ⇔ [(W = X) ∨ (W = Y)]})]}
W ∈ Z
WZ∈
W = X
WX=
W = Y
WY=
(WX=) ∨ (WY=)
(WX=)(WY=)∨
(WX=)(WY=)∨
WX=WY=∨
(WZ∈) ⇔ [WX=WY=∨]
(WZ∈)(WX=WY=∨)⇔
(WZ∈)( WX=WY=∨) ⇔
WZ∈WX=WY=∨⇔
∀W{WZ∈WX=WY=∨⇔}
{WZ∈WX=WY=∨⇔}∀W
{WZ∈WX=WY=∨⇔}∀W
WZ∈WX=WY=∨⇔∀W
∃X(WZ∈WX=WY=∨⇔∀W)
∃XWZ∈WX=WY=∨⇔∀W
∃XWZ∈WX=WY=∨⇔∀W
WZ∈WX=WY=∨⇔∀W∃X
∀Y[WZ∈WX=WY=∨⇔∀W∃X]
∀YWZ∈WX=WY=∨⇔∀W∃X
∀YWZ∈WX=WY=∨⇔∀W∃X
WZ∈WX=WY=∨⇔∀W∃X∀Y
∀X{WZ∈WX=WY=∨⇔∀W∃X∀Y}
∀XWZ∈WX=WY=∨⇔∀W∃X∀Y
∀XWZ∈WX=WY=∨⇔∀W∃X∀Y
WZ∈WX=WY=∨⇔∀W∃X∀Y∀X
WZ∈WX=WY=∨⇔∀W∃X∀Y∀X
No comments:
Post a Comment